Positivity, decay, and extinction for a singular diffusion equation with gradient absorption

نویسندگان

  • Razvan Iagar
  • Philippe Laurencot
  • Razvan Gabriel Iagar
  • Philippe Laurençot
چکیده

We study qualitative properties of non-negative solutions to the Cauchy problem for the fast diffusion equation with gradient absorption ∂tu−∆pu+ |∇u| q = 0 in (0,∞)× R , where N ≥ 1, p ∈ (1, 2), and q > 0. Based on gradient estimates for the solutions, we classify the behavior of the solutions for large times, obtaining either positivity as t → ∞ for q > p − N/(N + 1), optimal decay estimates as t → ∞ for p/2 ≤ q ≤ p − N/(N + 1), or extinction in finite time for 0 < q < p/2. In addition, we show how the diffusion prevents extinction in finite time in some ranges of exponents where extinction occurs for the non-diffusive Hamilton-Jacobi equation. AMS Subject Classification: 35B40, 35K67, 35K92, 35K10, 35B33, 49L25.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic behavior for a singular diffusion equation with gradient absorption

We study the large time behavior of non-negative solutions to the singular diffusion equation with gradient absorption ∂ t u − ∆ p u + |∇u| q = 0 in (0, ∞) × R N , for p c := 2N/(N + 1) < p < 2 and p/2 < q < q * := p − N/(N + 1). We prove that there exists a unique very singular solution of the equation, which has self-similar form and we show the convergence of general solutions with suitable ...

متن کامل

Extinction and decay estimates of solutions for a p-Laplacian evolution equation with nonlinear gradient source and absorption

*Correspondence: [email protected] 2School of Mathematical Sciences, Ocean University of China, Qingdao, 266100, P.R. China Full list of author information is available at the end of the article Abstract We investigate the extinction properties of non-negative nontrivial weak solutions of the initial-boundary value problem for a p-Laplacian evolution equation with nonlinear gradient source...

متن کامل

Existence and uniqueness of very singular solutions for a fast diffusion equation with gradient absorption

Existence and uniqueness of radially symmetric self-similar very singular solutions are proved for the singular diffusion equation with gradient absorption ∂tu−∆pu+ |∇u| q = 0, in (0,∞)× R , where 2N/(N +1) < p < 2 and p/2 < q < p−N/(N +1), thereby extending previous results restricted to q > 1. AMS Subject Classification: 35K67, 35K92, 34B40, 34C11, 35B33.

متن کامل

Eternal solutions to a singular diffusion equation with critical gradient absorption

The existence of nonnegative radially symmetric eternal solutions of exponential self-similar type u(t, x) = efβ(|x|e ;β) is investigated for the singular diffusion equation with critical gradient absorption ∂tu−∆pu+ |∇u| p/2 = 0 in (0,∞)× R where 2N/(N +1) < p < 2. Such solutions are shown to exist only if the parameter β ranges in a bounded interval (0, β∗] which is in sharp contrast with wel...

متن کامل

Global Existence and Extinction of Weak Solutions to a Class of Semiconductor Equations with Fast Diffusion Terms

We consider the transient drift-diffusion model with fast diffusion terms. This problem is not only degenerate but also singular. We first present existence result for general nonlinear diffusivities for the Dirichlet-Neumann mixed boundary value problem. Then, the extinction phenomenon of weak solutions for the homogeneous Dirichlet boundary problem is studied. Sufficient conditions on the ext...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017